

SEMM 1921 INTRODUCTION TOMECHANICAL ENGINEERING

PROBLEM SOLVING SKILLS

- 1.3.1 Why Problem Solving is Important?
 - Engineers by definition are problem solvers
 - Whether they are involved in analytical, experimental, computational or design work, engineers solve problems
 - In professional practice, engineers commonly solve problems that are highly complex and openended
 - Good engineering requires high-level thinking

- 1.3.1 Why Problem Solving is Important?
 - Professor Woods and his colleagues at McMaster University define problem solving as:
 - "Problem solving is the process of obtaining a satisfactory solution to a novel problem, or at least a problem which the problem solver has not seen before."
 - Real world problems tend to be quite different than most exercises found in engineering textbooks
 - Many studies have found that engineering graduates, even though they solve more than 2,500 exercises in their undergraduate work, lack the essential problem solving skills needed to tackle real world problems

• 1.3.2 Problem Approach

- 1.3.2 Problem Solving Approach
 - Wood's Method [2,3]

STEPS	DESCRIPTION
0. Engage/Motivation	I can do it! I want to do it!
1. Define the Problem	 ✓ Define what the problem states ✓ Sketch the problem (if appropriate) ✓ Determine the given information ✓ Determine constraints ✓ Define criterion for judging final product
2. Explore the problem	 ✓ Determine the real objective of the problem ✓ Examine issues involved ✓ Make reasonable assumptions ✓ Guess/estimate the answer

- 1.3.2 Problem Solving Approach
 - Wood's Method

STEPS	DESCRIPTION
3. Plan the solution	 ✓ Develop a plan to solve the problem ✓ Map out sub-problems ✓ Select appropriate theory, principles, approach ✓ Determine info that needs to be found
4. Implement the plan	✓ Take actions✓ Do calculations and analysis
5. Check the solution	✓ Units and accuracy
6. Evaluate/Reflect	 ✓ Is it reasonable? Does it make sense? ✓ Were the assumptions appropriate? ✓ How does it compare to initial guess/estimate? ✓ If appropriate, ask the question: is it socially / ethically acceptable?

- 1.3.2 Problem Solving Approach
 - Wales's Method Professional Decision Making Process
 [4,5]

STEPS	DESCRIPTION
1. Affirmation	 Make statement(s) that promote effective psychological management
2. Define the situation	 Ask questions and gather appropriate information with an intent of clarifying, interpreting, and understanding the situation
3. State the goal	 ✓ Determine the appropriate or best goal or combination of goals. ✓ The goal should be concrete ✓ The goal should be presented with enough specificity so different people would agree when the goal is reached

- 1.3.2 Problem Solving Approach
 - Wales's Method Professional Decision Making Process

STEPS	DESCRIPTION
4. Generate Ideas	 ✓ Generate many possible ways to reach the goal ✓ Analyze these ideas, and then select the best idea or combination of ideas
5. Prepare a plan	 Carefully plan the steps needed to make the best idea a reality
6. Take action	✓ Implement the plan
7. Review & Reflect	 ✓ Check the solution to assess quality. ✓ Analyze the problem solving approach in order to identify what worked and what did not work ✓ Seek ways to refine or improve one's problem solving approach ✓ Clarify what was learned during the complete experience.

- 1.3.2 Problem Solving Approach
 - Professional Decision Making Process : An Example [4]
 - 5.52 Water is forced out of this nozzle by a piston moving at a speed of 5 m/s. Determine the force F required to move the piston and the speed of efflux of water from the nozzle. Neglect friction on the piston and assume irrotational flow. The exit pressure is atmospheric; D = 6 cm and d = 2 cm.

CROWE: 5.52		JJS 11/15/00	1/1
AFFIRM T will practice skills that	load to aveall	anao in profossional	mantical
I will practice skins that	iedu to excelle	ence in protessional	practice
DEFINE THE SITUATION	1 Martinet	Piston forces H.O out o	of nozzle
1D=6 cm	1 = 2 cm	* Bernoulli eqn. applies	
	↓ V2	* p2 = 0 kPa-gage	
\rightarrow V ₁ = 5 m/s		* Assume steady flow	
	1	* Neglect friction on p	piston
Ûf	2		
GOAL			
F (IN) <== Force to move piston			
GENERATE TOFAS			
1 Conservation of Mass	2. Bernoulli Ea	in. 3. Eau	ilibrium
	$\frac{p_1}{p_1} + \frac{V_1^2}{2} = \frac{p_2}{p_2}$		
1.2.2	ρζρ	F	p ₁ A ₁
0 0			
PLAN	Carlos and and		
G E N		La Carte	1
$F F = p_1 A_1 \qquad \neg p$	-	$A_1 = \pi \bullet 0.03^2 \text{ m}$	
$p_1 + V_1^2 - p_2 + V_2^2$	4 0 - 1000	$ka/m^3 V = 5 m/r$	
$\rho_1 \rho_2 \rho_2$	φ=1000	$v_1 = 0 m^2$	$p_2 = 0$
V_2 $V_2 = V_1 \left(\frac{D}{d}\right)^2$ n	one	$D_d = 3$	
ACTION	Part and	TRACT	
1. $V_2 = \left(\frac{5 \text{ m}}{\text{s}}\right)(9) = \frac{45 \text{ m/s}}{100000000000000000000000000000000000$			
2. $p_1 = \rho \frac{(V_1^2 - V_2^2)}{2} = \left(\frac{1000 V_1}{m^3}\right)^2$	$\frac{45^2 - 5^2}{45^2}$	$\left(\frac{Pa \cdot n \cdot s^2}{r}\right) = 99$	8 kPa
		(rsg)	
3. $F = p_1 A_1 = \left(\frac{998 \text{ kN}}{\text{m}^2}\right) \left(\frac{\pi \cdot \text{m}^2}{1000000000000000000000000000000000000$	$\frac{0.06^{-} \text{ m}^{-}}{4} = \frac{2}{4}$	82 kN	
REVIEW	TEL LAS	11-11-	r reter
1. p. is about 10 atm' make sure	nine material	is strong	
Force on piston is about 600	bf		
2. GENI worked well; next time	double check	problem statement	
3. Jet speed about 90 mphis	this a safety is	ssue ??	
4. REMEMEBERContracting f	ow ==> good us	se of Bernoulli egn.	1.4° (3
			· · · · · · · · · · · · · · · · · · ·

UNIT SYSTEMS AND CONVERSIONS

Engineers specify physical quantities in two different—but conventional—systems of units:

- 1) United States Customary System (USCS)
- 2) International System of Units (Systeme International d'Unites or SI).

Practicing mechanical engineers must be conversant with both systems. They need to convert quantities from one system to the other, and they must be able to perform calculations equally well in either system.

Property	Units	C-C	Steel	Aluminum
System of units: USCS				
Specific gravity	_	1.68	7.8	2.6
Young's modulus	Msi	1.95	30	10
Ultimate tensile strength	ksi	5.180	94	40
Coefficient of thermal expansion	µin./in./°F	1.11	6.5	12.8
System of units: SI				
Specific gravity	-	1.68	7.8	2.6
Young's modulus	GPa	13.5	206.8	68.95
Ultimate strength	MPa	35.7	648.1	234.4
Coefficient of thermal expansion	µm/m/°C	2.0	11.7	23

To Convert from U.S. Units, to SI Units, Multiply by	U.S. Unit	SI Unit	To Convert from SI Units to U.S. Units, Multiply by	EXAMPLE 2.3-1. Conversion between Systems of Units Convert 23 lb _m • ft/min ² to its equivalent in kg • cm/s ² .
$\begin{array}{c} 25.4\\ 0.3048\\ 645.2\\ 16.39 \times 10^{3}\\ 416.2 \times 10^{3}\\ 0.09290\\ 0.02832\\ 0.4536\\ 4.448\\ 4.448\\ 1.356\\ 1.356\\ 1.356\\ 16.0185\\ 14.59\\ 14.59\\ 14.59\\ 14.59\\ 6.895\\ 6.895\\ 0.04788\\ \end{array}$	in. ft in. ² in ³ in. ⁴ ft ² ft ³ lb (mass) lb (force) kip (force) kip (force) ft-lb (moment) lb/ft ³ (density) lb/ft (load) kip/ft (load) psi (stress) ksi (stress) psf (load or pressure)	mm mm ² mm ³ mm ⁴ m ² m ³ kg N kN kN N-m kN-m kN-m kg/m ³ N/m kN/m kPa MPa kPa	$\begin{array}{c} 0.03937\\ 3.281\\ 1.550 \times 10^{-3}\\ 61.02 \times 10^{-6}\\ 2.403 \times 10^{-6}\\ 10.76\\ 35.31\\ 2.205\\ 0.2248\\ 0.2248\\ 0.2248\\ 0.7376\\ 0.7376\\ 0.06243\\ 0.06853\\ 0.06853\\ 0.06853\\ 0.1450\\ 0.1450\\ 20.93\\ \end{array}$	Solution As before, begin by writing the dimensional equation, fill in the units of conversion factors (new/old) and then the numerical values of these factors, and then do the arithmetic. The result is $\frac{23 \text{ lb}_{m} \cdot \text{ft}}{\text{min}^{2}} \frac{0.454 \text{ kg}}{100 \text{ cm}} \frac{100 \text{ cm}}{1 \text{ min}^{2}} \qquad \text{(cancellation of units})\\ \text{leaves kg} \cdot \text{cm/s}^{2}\text{)}$ $= \frac{(23)(0.454)(100) \text{ kg} \cdot \text{cm}}{(3.281)(3600) \text{ s}^{2}} = \boxed{0.088 \frac{\text{kg} \cdot \text{cm}}{\text{s}^{2}}}$
$0.566 \times (^{0}\text{F} - 32)$	ksi (load or pressure) ^o F	^{kPa} ^o C	$(1.8 \times {}^{\rm O}{\rm C}) + 32$	

U.S. Customary System of Units (USCS)

Fundamenal Dimension	Base Unit
length [L]	foot (ft)
force [F]	pound (lb)
time [7]	second (s)

Derived Dimension	Unit	Definition
mass [<i>FT</i> ² / <i>L</i>]	slug	lb _r ⋅s²/ft

	SI/Metric	Comparable Imperial/US Customary
		Units
Length	meter (m)	foot (ft)= 0.3048 m
		yard (yd) = 0.9144 m
	centimeter (cm) = 10 ⁻² m	inch (in) = 2.54 cm
	kilometer (km) = 10 ³ m	mile (mi) = 1.609 km
Area	square meter (m ²)	square foot $(ft^2) = 0.0929 m^2$ square yard $(yd^2) = 0.8361 m^2$
	square centimeter $(cm^2) = 10^{-4} m^2$	square inch $(in^2) = 6.452$ cm ²
	hectare (ha) = $10^4 \mathrm{m}^2$	acre (A or ac) = $43,560 \text{ ft}^2 = 0.4047 \text{ ha}.$
	square kilometer (km ²) = 10 ⁶ m ² = 100 ha	square mile $(mi^2) = 640 \text{ A} = 2.590 \text{ km}^2$
Volume	liter (1 or L)	gallon (gal) = 3.7851 cubic fact (θ^3) = 7.476 , gal = 28.321
	cubic centimeter (cm ³) = 1 milliliter (ml)	cubic inch $(in^3) = 16.39 \text{ cm}^3$
	cubic meter $(m^3) = 10^3 1$	cubic yard $(yd^3) = 0.7645 m^3$
Temperature ^a	degrees Celsius (°C)	degrees Fahrenheit (°F) = 9/5 (° C) + 32
Mass ^b	kilogram (kg)	pound (lb) = 0.4536 kg
	$gram(g) = 10^{-3} kg$	ounce (oz) = 1/16 lb = 28.35 g
	metric tonne or metric ton (t) = 10 ³ kg	short ton (commonly called "ton") = 2000 lb = 0.9071 t long ton = $2240 \text{ lb} = 1.016 \text{ t}$
	quintal (q) = 10^2 kg	hundredweight (cwt) = 100 lb = 0.4536 g
Force/weight ^b	newton (N)	pound (lb) = 4.448 N
Pressure	$pascal (Pa) = 1 N/m^2$	
	kilopascal (kPa) = 10^3 Pa	pounds per square inch (psi) = 6.893 Pa
	torricelli (torr) = 1 mm of mercurgi (mm Hg) = 0.1232 t-Pe	inches of mercury (in Hg) =
	$1 \text{ bar} = 10^5 \text{ kPa}$	25.4 mm Hg = 0.491 psi atmosphere (atm) = 1.013 bar
Energy ^c	joule (J)	foot-pound (ft-1b) = 1.356 J
	calorie (cal) = 4.187 J	
	kilocalorie (kcal or Cal) = 10 ³ cal	British thermal unit (Btu) = 1055 J = 0.252 kcal
Power	watt (W) = joules per second (J/s)	
	kilowatt (kW) = 10^3 W	horsepower (hp) = 0.7457 kW

SUMMARY: Units and Conversion

SI is the abbrevation of "Systeme International d'Unites" This is the international system of units is based upon : - seven base units as "length", "time", "temperature", "mass", etc - two supplementary units - derived units

Base units of SI

Base Unit	Name	Name	
Length	metre	m	
Mass	kilogram	kg	
Time	second	s	
Electric Current	ampere	A	
Temperature	kelvin	к	
Luminous Intensity	candela	cd	
Amount of Substance	mole	mol	

Supplementary units of SI

Supplementary Units	Name	Name	1
Plane Angle	radian	rad	
Solid Angle	steradian	sr	

The derived units may be divided into three groups :

- units which are expressed in terms of base and

supplementary units

- units which have been given special names and symbols - units which are expressed in terms of other derived units

Some derived units expressed in terms of base and supplementary units.

Derived Unit	Name	Name
Acceleration	metre / second squared	m / s²
Angular Acceleration	radian / second squared	rad / s ²
Area	square metre	m²
Density	kilogram / cubic metre	kg / m³
Kinematic Viscocity	square metre / second	m² / s
Mass Flow Rate	kilogram / second	kg/s
Molar Mass	kilogram / mole	kg / mol
Specific Volume	cubic metre / kilogram	m ³ / kg
Velocity	metre / second	m/s
Volume	cubic metre	m ^a

Some derived units have special names and symbols.

Derived Units	Name	Symbol	1
Force	Newton	1 N = 1 kg.m / s	_
Pressure, Stress	Pascal	1 Pa = 1 N / m	
Energy, Work, Quantity of Heat	Joule	1 J = 1 N.m	
Power, Radiant Flux	Watt	1 W = 1 J / s	
Electric Potential, Potential Difference	Volt	1 V = 1 W / A	
Electrical Resistance	Ohm	$1\Omega = 1V/A$	

Onwards are :

kilopascal (kPa) = 10³ N / m² = kN / m² kilonewton (kN) = 103 kg.m / s2 kilojoule (kJ) = 10³ N.m = kN.m

Conversion Table

From the old (metre-kilogram-second-ampere) system to units of SI.

1 Bar	= 100 kPa (0.1 N / mm ²)		
1 Btu (British Thermal Unit)	= 1.055 kl = 1055 J		
1 cP (Centipoise)	= 10 ⁻³ Pa.s		
1 cSt. (Centistokes)	= 10 ⁻⁶ m ² / s		
1 dyne	= 1 g.cm / s ² = 10 N		
1 erg	= 1 dyn.cm = 10 J		
1 hp (Horsepower)	≈ 745.7 W		
1 kcal	= 4.1868 kJ = 4186.8 J		
1 kcal / h	= 1.163 W		
Kelvin	≈ °C + 273		
1 mbar (Milibar)	= 100 Pa		
1 mmHg (Torr)	≈ 133.32 Pa		
1 mwc	≈ 9.81 kPa (9.81 kN / m ²)		
1 pk (paardekracht NL)	≈ 735.5 W		
1 psi	≈ 6.89 kPa (6.89 kN.m ²)		
1 kgf	≈ 9.81 N		
1 kgf / cm ²	≈ 98.07 kPa		

1 in	= 1 inch	= 25.4 x 10 ⁻³ m
1 ft	= 1 foot	= 0.3048 m
1 in ²	= 1 inch ²	= 0.64516 x 10 ⁻³ m ²
1 ft ²	= 1 foot ²	= 0.0929 m ²
	1 lb	= 0.454 kg
	1 lb /h	≈ 0.12599 x 10 ⁻³ kg / s
	1 in ³	≈ 16.387 x 10 ⁻⁶ m ³ (= 16.387 cm ³)
	1 UK gal	≈ 4.546 x 10 ⁻³ m ³ (= 4.546 dm ³)
	1 US gal	≈ 3.785 x 10 ⁻³ m ³ (= 3.785 dm ³)
	-	
	1 US gal	≈ 3.785 x 10 ⁻³ m ³ (= 3.785 dm ³)

Dimensional Consistency: Examples

DIMENSIONAL ANALYSIS

Dimensional consistency

•A basic principle states that equations must be dimensionally consistent. •Using van der Waals equation as an example,

Example 4 What are the dimensions of a and b?

$$\left(p+\frac{a}{V^2}\right)(V-b)=R^2$$

'a' has the units (pressure)(volume)²

- 'b' has the same units as 'V' [volume]

Dimensionless numbers

•There are some variables or group of variables that do not have a net unit. These are called non-dimensional or dimensionless variables, for example,

SKMM1922: Technical Problem Solving

 $KE = \frac{1}{2}mv^{2}; J = N-m$ $N-m = \frac{1}{2}(kg)(m/s)^{2}$ $= \frac{1}{2}(kg)(m^{2}/s^{2})$

 $N-m = \frac{1}{2}N-m$

Two Examples of Equations with Dimensional Consistency

 $v^2 = v_0^2 + 2a(x - x_0)$

x = v	t
Using	g dimensions
[<i>L</i>]=	$\frac{[L]}{[T]}[T]$
Using	g units
m = ($\left(\frac{m}{s}\right)s = m$

(Englise

0
Jsing dimensions
$\frac{[L]}{[T]}\right)^2 = \left(\frac{[L]}{[T]}\right)^2 + \frac{[L]}{[T]^2}([L] - [L])$
$\frac{[L]}{[T]}\right)^2 = \left(\frac{[L]}{[T]}\right)^2 + \frac{[L]}{[T]^2}([L])$
Jsing units
$\left(\frac{m}{s}\right)^2 = \left(\frac{m}{s}\right)^2 + \frac{m}{s^2}\left(m - m\right)$
$\left(\frac{m}{s}\right)^2 = \left(\frac{m}{s}\right)^2 + \frac{m}{s^2}(m)$

ESTIMATION IN ENGINEERING

In the earlier stages of design, engineers nearly always make approximations when solving technical problems. Those estimates are made to reduce a real system, as imperfect and non-ideal as it may be, into its most basic and essential elements.

- Assumption (inviscid, adiabatic, isothermal and etc)
- Linearised
- Simplified model
- Boundary Conditions
- Uncertainties
- Time and Cost

Examples of engineering estimation:

1. Bernoulli's Equation [assumptions: steady, inviscid and incompressible flow]

 $\frac{1}{2} \rho v^{2} + \rho g h + p = \text{constant (along a streamline)}$ Assumptions
Applied along a streamline

2. Mass-spring-damper to model vehicle suspension

A car and its suspension system traveling over a bumpy road can be modeled as a mass/spring/damper system. In this model, y_1 is the vertical motion of the wheel center of mass, y_2 is the vertical motion of the car chassis, and y_0 represents the displacement of the bottom of the tire due to the variation in the road surface.

Spring/mass/damper model for an automobile suspension system.

(3) Variation in gravity

g values (m/s²): Standard = 9.80665 Equatorial = 9.78033

(4) Fluctuation in data and signal measurement (Systematic Error + Random Error)

Statistics: Mean, Root-Mean-Square (RMS) and Standard Deviation (Sigma)

Resources

RESOURCES

- 1. Dr. Mohd. Shuisma bin Mohd. Ismail (2011), Chairman FYE Committee, Faculty of Mechanical Engineering, UTM *Notes and Personal Communication*
- Dr. Eric P. Soulsby, University Learning Skills: A First Year Experience Orientation Course for Engineers, 29th ASEE/IEEE Frontiers in Education Conference Session 11a7-6
- Donald F. Elger, Terry R. Armstrong, Steven W. Beyerlein, Carlo F. Felicione, Katharine J. Fulcher, Paul W. Rousseau (2001), *A Structured Problem Solving Model for Developing High-Level Skills*, Proceedings of the American Society for Engineering Education Annual Conference & Exposition
- 4. N. J. Mourtos, N. DeJong Okamoto & J. Rhee (2004), *Defining, teaching, and assessing problem solving skills*, 7th UICEE Annual Conference on Engineering Education UICEE, Mumbai, India
- 5. Wales, C.E., and Stager, R.A., (1990), *Thinking With Equations*, Center for Guided Design, West Virginia University, Morgantown, WV.
- 6. Woods, D.R., (2000), *An Evidence-Based Strategy for Problem Solving*, Engineering Education, 89 (4), 443-459