
chapter 5
Pipe Network Analysis

5.1 lntroduction

\Vater distribution network analysis provides the basis for the design of new systems and
the extension of existing systems. Design criteria are that specified minimum flow rates
and pressure heads must be attained at the outflow points of the network. The flow and
pressure distributions across a network are affected by the arrangement and sizes of the
pipes and the distribution of the outflows. Since a change of diameter in one pipe length
will affect the flow and pressure distribution everywhere, network design is not an explicit
process. Optimal design methods almost invariably incorporate the hydraulic analysis
of the system in which the pipe diameters are systematically altered (see, for example,
Featherstone and El Jumailly, 1.983).

Pipe network analysis involves the determination of the pipe flow rates and pressure
heads which satisfy the continuity and energy conservation equations. These may be stated
as follows:

(i) Continuity: The algebraic sum of the flow rates in the pipes meeting at a junction,

together with any external flows, is zero:

I :Np(/ )

I  Q ' t -F l : o '  / - 1 'NJ
I : 1

in which Ql7 is the flow rate in pipe IJ at junction /, NP(/) the
meeting at junction I, FI the external flow rate (outflow) at /
number of junctions in the network.

(ii) Energy conseruAtion:The algebraic sum of the head losses in the pipes, together with
any heads generated by inline booster pumps, around any closed loop formed by
pipes is zero.

/ :NP (1)

I  hrg -  Ido11 :0,  /  :  1 ,  NL
I :1,

in which hy11 rs the head loss in pipe / of loop I and I{o.g is the manometric head
generated by a pump in line {.

ts.1l

number of pipes
and NJ the total

15.21
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'When 
the equation relating energy losses to pipe flow rate is introduced into Equations

5.1 or 5.2, systems of non-linear equations are produced. No method exists for the direct
solution of such sets of equations and all methods of pipe network analysis are iterative.
Pipe network analysis is therefore ideally suited for computer application but simple
networks can be analysed with the aid of a calculator.

The earliest systematic method of network analysis, due to Professor Hardy-Cross,
known as the head balance or 'loop' method is applicable to systems in which the pipes
form closed loops. Assumed pipe flow rates, complying with the continuity requirement,
Equation 5.1., are successively adjusted, loop by loop, until in every loop Equation 5.2
is satisfied within a specified small tolerance. In a similarlater method, due to Cornish,
assumed junction head elevations are systematically adjusted until Equation 5.1 is satisfied
at every junction within a small tolerance; it is applicable to both open- and closed-loop
networks. These methods are amenable to desk calculation but can also be programmed
for computer analysis. However convergence is slow since the hydraulic parameter is
adjusted at one element (either loop or junction) at a time. In later methods systems of
simultaneous linear equations, derived from Equations 5.1 and 5.2 and the head loss-
flow rate relationship, are formed, enabling corrections to the hydraulic parameters (flows
or heads) to be made over the whole network simultaneously. Convergence is much more
rapid but since a number of simultaneous linear equations, depending on the size of the
network, have to be solved, these methods are only realistically applicable to computer
evaluation.

The majority of the worked examples in this chapter illustrate the use of Equations 5.1
and 5.2 in systems which can be analysed by desk calculation using either the head balance
or quantity balance methods. In addition to friction losses, the effect of local losses and
booster pumps is shown. The networks illustrated have been analysed by computer but
the intermediate steps in the computations have been reproduced, enabling the reader to
follow the process as though it were by desk calculation; the numbers have been rounded
to an appropriate number of decimal places. An example showing the gradient method is
also given.

5.2 The head balance method ('loop' method)

This method is applicable to closed-loop pipe networks. It is probably more widely applied
to this type of network than is the quantity balance method. The head balance method was
originally devised by Professor Hardy-Cross and is often referred to as the Hardy-Cross
method. Figure 5.1 represents the main pipes in a water distribution network.

The outflows from the system are generally assumed to occur at the nodes (junctions);
this assumption results in uniform flows in the pipelines, which simplifies the analysis.

For a given pipe system with known junction outflows, the head balance method is an
iterative procedure based on initially estimated flows in the pipes. At each junction these
flows must satisfy the continuity criterion.

The head balance criterion is that the algebraic sum of the head losses around any closed
loop is zero; the sign convention that clockwise flows (and the associated head losses) are
positive is adopted.

The head loss along a single pipe is

b:  KA

!a
L
e)*,
CL
G
7

lr,



1 1 8 Civil Engineering Hydraulics

Inflow //
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Figure 5.1 Closed-loop pipe network.

If the flow is estimated with an error A Q

h :  K (Q+  A  Q)2  :  K le  +zQLg+  Ad l

Neglecting LQ2 and assuming AQ to be small,

b - K(C +zQ^Q)

Now round a closed loop I h - 0 and AQ is the same for each pipe to maintain
continuity.

ln  -  I  KC +z^QDKQ: o
.  AN D 'KE D,KE+ ' \  r  

zDxg :  
-  

zyxg lg

which may be written as AQ --EL-, where E is the head loss in a pipe based on the

estimated flow Q.

5.3 The quantity balance method ('nodal' method)

Figure 5.2 shows a branched-type pipe system delivering water from the impounding
reservoir A to the service reservoirs B. C and D. F is a known direct outflow from the
node / .

Figure 5.2 Branched-type pipe network.

/ / / /

/ / /

rl
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If ZI is the true elevation of the pressure head at I , the head loss along each pipe can
be expressed in terms of the difference between Z7 and the pressure head elevation at the
other end.

For example: hy,61 - Zn - 21.
Expressing the head loss in the form h : Kg?, N such equations can be written as

(where N is the number of pipes) $

f zo - Ztl : r(srcN) Knr I a_ni l)^'l
|  4-  Zt  |  _  |  (SIGN) Ksr( lSr l ) '  I
I  r r  I  15 .31
r : l l : l
lz, - zt ): L tsrcNl Ktt |eu t), )

and in general, (SIGN) is * or - according to the sign of (Zr - 4). Thus flows towards
the junction are positive and flows away from the junction are negative.

K17 is composed of the friction loss and minor loss coefficients.
The continuity equation for flow rates at / is

I Q t r  
_  F -  Q - q i + Q l + Q c 7 * S . r - F : 0  t 5 . 4 1

Examination of Equations 5.3 and 5.4 shows that the correct value of 21 will result in
values of Qrl, calculated from Equation 5.3, which will satisfy Equation 5.4.

R-earranging Equation 5.3 we have

F zr r\ t  t '1tOr l -  l lsrcNl  (Y5- t  r  ts .s l
L \ t t t l / J

The value of 21 can be found using an iterative method by making an initial estimate of
21, calculating the pipe discharges from Equation 5.5 and testing the continuity condition
in Equation 5.4.

If (I Qtl - E) + 0 (with acceptable limits), a correction LZ1 is made to 21 and the
procedure repeated until Equation 5.4 is reasonably satisfied. A systematic correction for
L^21 can be developed: expressing the head loss along a pipe as h:KQIL,for a small
error in the estimate ZT rthe correction L,Z1 can be derived as

aZ1 -
z(DQry -  F)

D Qr1 lhlt

Example 5.7 shows the procedure for networks with multiple unknown junction head

elevations.
Evaluation of K77:

K1 ,:ff i.#(:Kr+K-)
where C- is the sum of the minor loss coefficients. ), can be obtained from the Moody chart
using an initially assumed value of velocity in the pipe (say 1 m/s). A closer approximation
to the velocity is obtained when the discharge is calculated. For automatic computer

119
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analysis Equation 5.5 should be replaced by the Darcy-Colebrook-White combination:

t h ,
Q: -2A\ f  2sD;tos

For each pipe, h1,11 (friction head loss) is
Equation 5.6 and h1.77 re-evaluated from
follows the procedure of Example 4.2.

I  k 2.s1.v \
\ : - 'o * ;@.)  

15 '61

initialised to'21 -.21, Qr1 calculated from
hr,rt : Vr - 4) - X^$t. This subroutine

t1
t
Al
ttt+
o

l,

5.4 The gradient method

In addition to Equations 5.1-5.6, the gradient method needs the following vector and
matrix definitions:

NT - number of pipelines in the network

NN - number of unknown piezometric head nodes

l[l2]: 
'connectivity matrix' associated with each one of the nodes. Its dimension is
NT x NN with only two non-zero elements in the ith row:
-1 in the column corresponding to the initial node of pipe i

1 in the column corresponding to the final node of pipe i

NS : number of fixed head nodes

tA10] - topologic matrix: pipe to node for the NS fixed head nodes. Its dimension is

NT x NS with a -1 value in rows corresponding to pipelines connected to
fixed head nodes

Thus, the head loss in each pipe between two nodes is

tAlll lQl +lLt2l[H] : -[A10][Ho]

where

[A11] : diagonal matrix of NT x NT dimension, defined as

l"''n'"'-"; 
ut

tA11l -  
|  :
Lo

+6,  0
otQY' , - t '+pr+&

:
0

0
0

o*t*i'-t' + pr, *

l
I

ffil
ts.8l

ls.7l

t5.el

[Q] : discharge vector with NT x 1 dimension

[H] : unknown piezometric head vector with NN x 1 dimension

[Ho] : fixed piezometric head vector with NS x 1 dimension

Equation 5.7 is an energy conservation equation. The continuity equation for all nodes
in the network is

lAzrl[Q] : [q]
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where l ztl is the transpose matrix of [A12] and [q] water consumption and water supply
vector in each node with NN x 1, dimension.

In matrix form, Equations 5.7 and 5.9 are

tlA11l tA12l-l [ta]l - [-lnt0]tnoll
LtA21l tol I LtHll 

- 
L Lql I

The upper part is nonlinear, which implies that Equation 5.10 must use some iteratiue
algorithm for its solution. Gradient method consists of a truncated Taylor expansion.
Operating simultaneously on ([Q], [H]) field and applying the gradient operator, we can
write

and

ldql  : tA2l l lQt l  - tq l [s.14]

The ob jective of the gradient method is to solve the system described by Equation 5. 1 1 ,
taking into account that in each iteration

ldQl  : [Qi+r ]  - tQi l [s.1s]

121

[LNlnnI r+3r-l tfq3ll : liqr]l Ls 11l
L IA21l Lol I LIdHl.l 

- 
L[aql I

where [N] is the diagonal matrix (nr, nz, ..., nNr) with NT x NT dimension and [,{1L]'
: NT x NT matrix defined as

fo''Q'i'-') o o o I
l ou2q(nz - r )oo l

tAl l l ' : l  o  o a3Qlz- t )  o I  rs .1,2 l
l : : : : : : ' l
L; ; ; ::: "*,ok|'-',1

- In any iteration i, [dE] is the energy imbalance in each pipe and [dq] is the discharge
imbalance in each node. These are given by

ldEl : [A11][Qi] + lLtzllHil + [A10][H0] [s.13]

[s.10]

ls.17l

[s .18]

la
L
q,
t
E
G
a
t

and

Using matrix algebra, it
by  Equat ion  5 .11  is

lHi+rl - -{[A21](tNl[A1 1 ] ')-1 [A12]]-1{lA21l(tNl[A11]',)-1
(tA11l[Qi]) + [A10][Ho] - ([A21]tQrl) - tql]

[Qi+r] : {[r] - (tNl[A11]') - tA11l]tQ;l - {(tNllA11l')-1(tA12l
[Hi+r] + [A10]lHol)]

The method has the advantage of fast convergence and does not need continuity balancing
in each node to begin the process. The method is not suited for hand calculation. Example
5.8 illustrates the methodology.

tdHl - [Hi+r] - [Hi] [s.16]

is possible to show that the solution to the system represented
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Figure 5.3 Two-loop network.

Worked examples

Exomple 5.1

Neglecting minor losses in the pipes, determine the flows in the pipes and the pressure
heads at the nodes (see Figure 5.3).

Data
;

t:

Length (m) 600
Diameter (mm) 250

200
200

600
1 5 0

200
100

600
150

600
150

200
100

Roughness size of all pipes : 0.06 mm
Pressure head elevation at A:70 m o.d.

Eleuation of pipe nodes

XoA* ;

Elevation (m o.d.)

Procedure:

1. Identify loops. 
'Sfhen 

using hand calculation the simplest way is to employ adjacent
loops, e.g. Loop 1: ABEFA; Loop 2: BCDEB.

2. Allocate estimated flows in the pipes. Only one estimated flow in each loop is required;
the remaining flows follow automatically from the continuity condition at the nodes;
e.g. since the total required inflow is 220 Lls, if Qns is estimated at'1,20 L/s, then

Qar - 100 Lis. The initial flows are shown in Figure 5.3.
3. The head loss coefficient K - ),Ll2gDA2 is evaluated for each pipe, I being obtained

from the )" vs. Re diagram (Figure 4.2) corresponding to the flow in the pipe. Alter-
natively, Barr's equation (Equation 4.1,2) may be used.

202025 2522

1 0 (
\7@
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If the Reynolds numbers arc fatly high (+10s), it may be possible to proceed with
the iterations using the initial ,1. values, making better estimates as the solution nears
convergence.

The calculations proceed in tabular form. Note that Q is written in litres per second
simply for convenience; all computations are based on Q in cubic metres per second.
However, hlQcould have been expressed in m/(L/s) yielding AQ directly in litres per
second.

0u),Pipe, hl',l iRe!D,

AB 0.00024
f 4 BE 0.00060LooP t 

EF o.ooo4o
FA 0.00030

120.00
10.00

-60.00
-100.00

5.4L
1,.3L
4.51
s.63

0.01.57 797 .0 1.1..48 9s.64
0.0205 33877.0 3.39 338.77
0.0172 1.1229.1 -40.42 673.75
0.01.62 336.6 -8.36 83.66

t -33.91.  1r9L.82

+  A Q :
-Dh

2 L h I Q

-  BC 50.0
r  ^  cD 10.0
LooP z 

DE _zo.o

EB -24.23

_ 
- ( -33 .91)  

:0 .0 t423 :  t4 .23  L ts .
2 x 1.1,91,.82

3.76
1, .13
1.50
2.73

0.01.74 l l359.7
0.0205 33 877.0
0.0189 1.2338.9
0.0189 31,232.9

28.40
3.39

-4.94
-18.34

s67.98
338.77
246.78
756.77

I -8 .51  1910.30

+  A Q :  - 2 . 2 3 L 1 s .

(Note that the previously corrected value of flow in the 'common'pipe EB has been used
in Loop 2.)

Pipe Q (L/s Ri x tOs; K h trril t ,

AB
BE

Loop t 
EF
FA

L34.23
26.46

-45.77
-8s.77

6.05
2.98
3.44
4.83

1,4.27
21..75

-23.93
-6.23

106.30
822.0s
522.92
72.64

0.0156 791, .9
0.0188 31.067.7
0.01.7 5 L1,424.9
0.01.64 846.9

5.86 L523.91,

=+ AQ :  -1 .92L1s .

Proceed to loop 2 agarn, and continuing in this way the solution is obtained within the
required specified limit on lh in any loop after several further iterations. The solution
given is obtained for Dh .0.01 m but an acceptable result may be achieved with a larger

tolerance.

T
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Final ualues

Pipe Q (L/s) h ( i l

Presswre heads

Node Pressure head (m)

40.00
31,.29
1. t .57
10.05
1,4.74
38.41,

AB
BE
FE
AF
BC
CD
ED

1 3 1 . s 5
25.02
48.4s
88.45
46.53

6.55
23.47

1,3.70
19.55
26.67

6.s9
24.74

1,.52
6.69

A
B
c !
D
E
F

Note: Flows in direction of pipe identifier, e.g. A -+ B.

Example 5.2

In the network shown in Figure 5.4 a valve in BC is partially closed to produce a local

head loss of 1,0v!r12g. Analyse the flows in the network.

Pipe AB
Length (m) 500
Diameter (mm) 250

BC CD
400 200
150 100

DE
400
150

BE EF
200 600
150 200

AF
300
2s0

' n

. 5
c

E
tn

lVor"r Roughness of all pipes is 0.06 mm.

Solution:

The procedure is identical with that of the previous problem. Kss is now composed of the
valve loss coefficient and the friction loss coefficient.

\7ith the initial assumed flows shown in the table below, Sc : 50 L/s; Re : 3.7 x l}s

k1D - 0.0004; )" - 0.0174 (from the Moody chart). Hence, KI:7573, K- : 1.632 and
Ksc : 9205.

; F
+40

Figure 5.4 Pipe network with valve losses.

Valve

10e .



Pipe Network Analysis 125

Pipe klD, Q ( L / s )  R e  ( x 1 0 s ) I K h  (m)  b lQ m
-'A-

AB 0.00024
f 4 BE 0.00040LooP t 

EF o.ooo3o
FA 0.00024

1,20.00 5.41
10.00 0.7 5

-40.00 2.25
-80.00 3.61,

0.0ts7 664.2
0.0208 4 526.s
0.0175 271,1, .2
0.01.63 t413.7

9.s6 79.70
0.4s 4s.26

-4.34 108.4s
-2.65 33.10

I 3.03  266.51

=+ AQ :  -5.69 Lls.

Pipe klD Q (L/s) Re (x  10s) K h (il h tQ m
- 3 ^

Loop 2

BC
CD
DE
EB

0.0004 50.00
0.0006 10.00
0.0004 =20.00
0.0004 -4.31,

0.01.74 9 20s.2
0.0205 33 877.0
0 .0190 8226.0
0.0242 5 266.4

23.01 460.26
3.39 338.77

-3 .29  L64,52
-0.10 22.70

3 . 7  5
1 . r3
1.50
0.32

t 23.0L 986.25

+ AQ - -tL.67 Lls.

Proceeding in this way the solution is obtained within a small limit on lh in any loop:

Final ualues

Pipe AB BE FE

Q (L/s) t1.1..s2 1.6.48 48.48
hr  @)  8 .31  1 .1s  6 .26

FA BC CD ED
88.48 35 .05  4 .95  34 .95
3.20 1r.57 0.91. 9.52

EI
L i
o
*lg
f i t l

E
v

Example 5.3

If in the network shown in Example 5.2 a pump is installed in line BC boosting the flow

towards C and the valve removed, analyse the network. Assume that the pump delivers a

head of 10 m. (Note: In reality, it would not be possible to predict the head generated by

the pump since this will depend upon the discharge. The head-discharge relationship for

the pump, e.g. H : Ae + BQ * C, must therefore be solved for the discharge in the pipe

at each iteration. However, for the purpose of illustration of the basic effect of a pump the

head in this case is assumed to be known.) An example of a network analysis in which the
pump head-discharge curve is used is given in Chapter 6 (Example 6.8). Consider length
BC (see Figure 5.5).

The net loss of head alon g BC(Zg - kl is (fu - Hp ), where tlo is the total head delivered

by pump. The value of K for BC is now due to friction only; the head loss for BC in

the table now becomes Ep,s6: (K A"r- 10) m. Otherwise the iterative procedure is as

before.
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B Pump

Figure 5.5 Network of Example 5.2 with pump.

Solution:

Pipe klD Q (L/s)

AB 0.00024
, 4 BE 0.00040LooP t 

EF o.ooo3o
FA 0.00024

1,20.00
10.00

-40.00
-80.00

5.41.
0.75
2.25
3.61,

0.01.57 664.2 9.56 79.70
0.0208 4 526.5 0.45 45.26
0.0175 271.1. .2 -4.34 108.45
0.01,63 413.7 -2.65 33.10

T 3.03 266.51

+ AQ :  -5 .69  L ts .

klD', x tOsR*, K tt til i,l'

BC 0.00040
r ^ cD 0.00060
LooP L 

DE o.ooo4o
EB 0.00040

50.00
10.00

-20.00
-4.3t

3.76
t . 1 3
1.50
0.32

0.01,74 7 573.0 8.93 1,78.66
0.020s 33 877.0 3.39 333.77
0.0189 822s.96 -3.29 764.s2
0.0242 5 266.4 -0.10 22.70

I 8.93 704.6s

+  A Q :  - 6 . 3 4 L | s .

10

Loop L

11,4.31,
10.65

-45.69
-85.69

5 . 1 5
0.80
2.57
3.66

0.0158
0.0206
0.01.73
0.01,62

AB
BE
EF
FA

668.4 8.73
4 482.9 0.51
2 680.2 -5.59

4Lr .2  -3 .02

76.4L
47.74

1,22.46
35.24

D 0.63  281.85

+ A8 :  - l .1L L/s.

After similar further iterotions:

Final ualwes

Pipe AB BE FE

Q (L/s)  1.13.21 8.90 46.79
hr (m) 8.57 0.37 5.83

FA BC
86.79 44.30
3.10  4 .95

CD
4.30
0.71

ED
25.70
5.29
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Figure 5.6 Network connecting multi-reservoirs.

Exomple 5.4

Determine the discharges in the pipes of the network shown in Figure 5.6 neglecting minor

losses.

AJ
BJ
CJ
DJ

10 000
2 000
3 000
3 000

450
350
300
250

Note: Roughness size of all pipes is 0.06 mm.

The friction factor ), may be obtained from the Moody diagram, or using Barr's equation,

using an initially estimated velocity in each pipe. Subsequeniy, )" can be based on the

prerriously calculated discharges. However, unless there is a serious error in the initial

velocity estimates, much effort is saved by retaining the initial ). values until perhaps the

penultimate or final correction.

Solution:

Estimate 27 (pressure head elevation at J) - 150.0 m a.o.d. (Notez the elevation of the

pipe junction itself does not affect the solution.) See tables below and on p.128.

I -0.2862 0.0193

=* correct ionto Z 
2(-0'2862)

t : = 
Offi 

: -29.67; Zr :1'20.33m.
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Second correction

n,n.'J'i$#' o"(xlos) K zr - zt t#rl eth (x1o-3) (3ri
AJ As
BJ initial
CJ estimate
DJ

7.96
6.20
5 . 3 1
4.42

0.0145 649 79.67 0.3504
0.0150 472 -0.33 -0.0264

0.0155 1581 -20.33 -0.11,34

0.0165 4188 -45 .33  -0 .1040

4.39
80.1,2
5 . 5 8
2.29

2.20
0.27
r .60
2.20

D +0.1066 +0.092

+ Lq  :  a2 .30  ̂ ;  Z t  :122.63  m.

Comment: The velocity in BJ has changed significantly but it may oscillate; rt is therefore

estimated at L.0 m/s for next correction. Note that ). (BJ) altered accordingly.

Third correction

Velocity
(estimate)

Pipe (m/s) K zr - zt t#rrl Qth (^10-3) flA
AJ
BJ
CJ
DJ

2.0
1 .0
1 . 8
2.3

0.0145 649 77.37
0.01.6 503 -2.63

0.0155 1581 -22 .63

0.016 4061 47.63

0.3452
-0.0723
-0 .1 ,196

' 0 . 1 0 8 3

4.46
27.50
s.29
2.27

2 . t 7
0 .7  5
1 .69
2.21,

n
!r
It

?
o.l
t r

t
+ LZt  :2 .27  ^ ;  Z t  :1 .24 .90  m.

Fi,nal ualues:

QAJ -  0.344 m3ls;  Q, :  0.105 m3ls;

+0.0450 0.0395

Ql. : 0.1'27 ̂3 lt; QJo : 0.1'1,2 m3/s

Exomple 5.5

If in the network of Example 5.4 the flow to C is regulated by a valve to 100 L/s, calculate

the effect on the flows to the other reservoirs; determine the head loss to be provided by

the valve.
The principle of the solution is identical with that of the previous example except that

the flow in JC is prescribed and simply treated as an external outflow at J. In this example

the flow rates in the pipes have been evaluated directly from Equation 5.6.

Q _  - 2 4

in which h : Zr - Zl,since there are no minor losses. This approach is ideal for computer

analysis; if minor losses are present use the iterative procedure described in Example 4.2.
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The method is also suitable for desk analysis using an electronic calculator since for
each pipe the only variable is h and Equation 5.6 can be written as

Q: -c r  r t  bg  ( r r *9)- \  
. r t l

in which Ct, Cz and C3 are constants for a particular pipe.
The corresponding velocities and l values have been evaluated and tabulated; these data

may be useful for those who wish to work through the example using the Moody diagram
as shown in Example 5.4.

Note that Q is expressed in litres per second; in evaluating
expressed in litres per second so that the units in the correction

E Q/ h) are consistent.

L, alh the flow is also
te rm A ,Z :z (DQ-  F ) l

Example 5.5 calculation

Pipe AJ
k/D 0.000133

BJ DJ
0.000171 0.000240

Note: Estimate Zt :150.00 a.o.a.

First correction

Pipe ?-nti,t e (r/s) elh V (m/s) I

AJ
Junction J BJ

DJ

279.32 5.59
-25 5.95 8.53
-1,37.90 1.94

1.76  0 .0143
2.66  0 .0146
2.81, 0.0155

50.00
-30.00
-7 5.00

ta
L
e)+.a(t
s
U

t -114.s3 1.s.96

zl

zl

I Correction to : 2 (DQ-  P )
D,Q/h

-  123 .11  m

2(-144.s3 -  100)
:  -26 .89  m

1.5.96

Second correction

Pipe Zt - Zt Q (L/s) Ql h V (m/s)

Junction J
AJ
BJ
DJ

76.89 349.70
-3.11, -77.61,

-48 .1 ,1  -109.50

2.20 0.0140
0.81  0 .0164
2.23  0 .0158

4.55
24.96

2.28

+ LZt : 3.94 m; ZI : I27 .05 m.
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AJ 72.9s 340.2 4-66 2-t4 0.0141

Junction J BJ -7 .05 -1'1,9.94 1'7 .0t 1'25 0'0156
DJ -s2.05 -114.08 2. r9 2.32 0.01s8

+  L Z I  : 0 . 5 2 m ;  Z I  : 1 ' 2 7 - 5 7  m .

Final ualues

[-

I
I
I
1
!
!
I
?
I

Pipe

Q (L/s)
AJ

338 .98
JB

r24.36
JD

1,14.65

Head loss due to friction along JC:

Diameter -  300 mm; A:0.0707 ^ ' ;

^ 1,.415 x 0.3 . -..R e :  
1 1 3  

"  
1 b =  

: 3 ' / 6

.  0 . 0 1 6  x  3 0 0 0  x  I
w h e n c e X - 0 . 0 1 . 6 ;  h r : @

I
l x

J

Q - 0.100 m3ls; V - 1' .41'5 mls

- b
x  1 0 ' t  

i :  
0 . 0 0 0 2

x 3000 x t .4I52
= 1.6.33 m

(see Figure 5.7).

* Head loss at valve - Zl - k - ht
-  t27.55 -  100.00 -  1 .6.33

- 1.1.22 m

Exomple 5,6

In the network as before, a pump P is installed on JB to boost the flow to B. \fith the flows

to C and D uncontrolled 
"nd 

ttr. pump delivering 1-0 metres head, determine the flows in

the pipes (see Figure 5.8).

Figure 5.7 Network of Example 5.4 with valve losses.
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Figure 5.8 Network of with pump.

Note: In the case of rotodynamic pumps the manometric head delivered varies with the
discharge (see Chapter 6). Thus it is not strictly possible to specify the head and it is
necessary to solve the pump equation I+: AA + BQ+ C together with the resistance
equation for JB. However to illustrate the effect of a pump in this example let us assume
that the head does not varv with flow.

Solution:

The analysis is straightforward, and follows the procedure of Example 5.5.
The head giving flow along JB is

h L , B : Z l - Z s - H p

The final solution is as follows:

1 3 1

Pipe

I ( L  )
AJ JB

357.7 141,.6
JC

110 .8
JD

105.3

t(

{

Note: Zt :119.66 m o.d.

Exomple 5.7

Determine the flows in the network shown in Figure 5.9 neglecting minor losses.

Pipe AB BC BD
Length (m) 10 000 3 000 4 000
Diameter (mm) 450 250 250

BE EF EG
6 000 3 000 3 000

3s0 250 200

Note: Roughness of all pipes is 0.03 mm (:ft).
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Figure 5.9 Network with multi-reservoirs.

Solution:

In this case there are two unknown pressure head elevations which must therefore be both
initially estimated and corrected alternately.

Estimate Zs - 1.20.0 m o.d.; Zp - 95.0 m o.d.

First correction

Pipe
Z r - Z t

(:h) Q (L/s) Ql h V (m/s) I

AB
CB

Juncuon I' DB
EB

30.00 21,9.77
-20.00 -71..38
-40.00 -86.7s
-2s.00 -13s.00

7.33 1.38 0.01,39
3.57  1 .45  0 .0155
4.34  t .77  0 .0151
5.40 t .40 0.0145

t -73.35 20.63

+ LZB : 17 'tt m; Zs : 1L2.89 m-

Proceed to Junction E noting that the amended value of Zs is now used:

Pipe Zt - Zt Q(L/s) Qlh V (m/s) t

Junction E
BE
FE
GE

1.7.89 1.1.2.81 6.31
-20.00 -7t .38 3.s7
-3s.00 -s3.38 1.53

1..1.7 0.01.49
r.45 0.0155
1.70 0.0159

+ LZE:  -2 . I  m3 Zn

T
: 9 2 . 9  m .

11.95 11,.40
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Second correction

Pife i , -Z t

AB
CB

Junctlon I, DB
EB

37.1.t 246.21,
-1 ,2 .89  -56 .38
-32.89  -78 .16
-1 ,9 .99  -119.7  5

6.63
4.37
6.06
5.99

1.55 0.0t37
1.15  0 .0160
1.59  0 .0153
1,.2s 0.0148

t -8.07 23.06

+  L Z B :  - 0 . 7  m ;  Z s : 1 L 2 . L 9  m .

) Pipir Zr - Zt Q (L/s) Ql h

BE
Junction E FE

GE

92.9 117.48 6.09
-t7.9 -67.26 3.76
-32.9 -51..64 1.57

t .22 0.0148
r .37 0.0156
1..64 0.0159

T -1.43 Lr.42

+  L Z E :  - 0 . 2 5  m ;  Z n : 9 2 . 6 5  m .

Exomple 5.8

In the network shown in Figure 5.L0, a valve in pipe 2-3 is partially closed, producing a
local head loss of 10vt3l2g. The head at node 1 is 100 m of water. The roughness of all

pipes is 0.06 mm. The pipe lengths are in metres and the demand discharges are in litres
per second.

The pipe diameters are pipes L-2 and 1-6, 250 mm; pipe 6-5, 200 mm; pipes 2-3
and 4-5,1,50 mm; pipes 2-5 and 3-4, 100 mm. Analyse the network using the gradient
method.

4 0 6

Figure 5.10 Pipe network with valve loss.
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4 0 5

Figure 5.11 Network solution.

The iterative process can be summarised in the following steps:

1. Assume initial discharges in each of the network pipes. (They can be unbalanced at

each node.)
2. Solve the system represented by Equation 5.17 using a standard method for the

solution of simultaneous linear equations.
3. \fith the calculated [H1a1] (Step 2), [Qr+r] is solved by Equation 5.18.

4. With ttre new [Qi+r], Equation 5.L7 is solved (Step 2) to find a new [Hi+t].
5. Process continues until

[Hi+r] r [Hi]

For all pipes initial discharges of 100 L/s have been assumed with the directions as shown

in Figure 5.11.

Solution:

All the matrices and vectors needed for the gradient method are as follows:

N T _ 7

N N _ 5

N S _ 1

lLLzl - corinectivity matrix; dimension (7 x 5)

1 0
-1, L

0 1 . -
0 0

- 1  0
0 0
0 0

0 0
0 0
0 0

-1. 0
L 0
1. -L
0 t

X

0
0
t
1.
0
0
0

00

5
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[A2T): transposed matrix of [A12]

[I] = identity matrix; dimension (7 x 7)

11 
-1. 0 0

1011 .0
l0  0 -1_  1

l 0  0  0 -1
l oo0o

lA10l tQl tHl
( -3 l r )

0 .10
0 .10
0 . 1 0
0 . 1 0
0 . 1 0
0 .10
0 .10

2 0
0 2
0 0
0 0
0 0
0 0
0 0

0 0
0 0
2 0
0 2
0 0
0 0
0 0

0 0
1 0
O T
0 0
0 0
0 0
0 0

-1,
0
0
1,
0

0 0
0 0
0 0
1 0

* 1 1  1 .

[A10] - topologic matrix node to node; dimension (7 x I)

[Q] : discharges vector; dimension (7 x 1')

[H] : unknown piezometric head vector; dimension (5 x

[Ho] : fixed piezometric head vector; dimension (1 x 1)

[q] : water demand vectorl dimension (5 x 1)

1 )

LIz

EI3

H4

Hs

LI5

-1,
0
0
0
0
0

-1,

lHol
(m)

Irool

Iql
(tn3lr)

l 0 .06  |
10 .04  |
10 .03  |
10 .03  |
10 .04  I

[N] : diagonal matrix; dimension (7 x 7l; having 2 in the diagonal (from the Darcy-
Weisbach head loss equation)

0 0 0
0 0 0
0 0 0
0 0 0
2 0 0
0 2 0
0 0 2

0 0
0 0
0 0
0 0
0 0
1 0
0 1 ,

1.
0
0
0
0
0
0

0 0
0 0
0 0
1 0
0 1 ,
0 0
0 0

First iteration:
The previous matrices and vectors are valid for all the iterations. The following matrices

change in each iteration:



[A21] : transposed matrix of [A12)
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tql
m3ls)

0.06 |
0.04 |
0 .03 |
0 .03 |
0.04 |

11 -1. 0
l0L r
l0  0 -1
1000
1000

0- r
0 0
1 0

-1. r
0 0

001
001
001

, L  0 l
1. f[

[A10] : topologic matrix node to node; dimension (7 x 1')

[Q] : discharges vector; dimension (7 x 1')

[H] : unknown piezometric head vectorl dimension (5 x

[Ho] : fixed piezometric head vector; dimension (1 x 1)

[q] - water demand vector; dimension (5 x 1)

1 )

lA10l tQl
m3ls)

tHl lHol
(m)

I rool- 1
0
0
0
0
0

- I

0 .10
0 .10
0 .10
0 . 1 0
0 .10
0 .10
0 .10

Flz
rI3
H4

IIs

Fte

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 2

0 0 0 0 0
0 0 0 0 0
1 , 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 L 0
0 0 0 0 1 ,

[N] : diagonal matrix; dimension
$Teisbach head loss equation)

(7 x 7); having 2 in the diagonal (from the Darcy-

[I] = identity matrix; dimension (7 x 7)

1 0
0 1 .
0 0
0 0
0 0
0 0
0 0

First iteration:
The previous matrices and vectors are valid for all the iterations. The following matrices

change in each iteration:
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-\ 
tA1l] : diagonal matrix; dimension (7 x 7);having the value a;Q"i-t1 on the diagonal,

with coefficients B and y zero as no pumps exist in the network
The following table shows the calculated values for a:

Pipe
a

(m3ls)
v

(m/s)

1,-2
2-3
3-4
5-4
2-5
6-5
6-1

0 . 1 0
0 . 1 0
0 . 1 0
0 . 1 0
0.10
0 . 1 0
0 . 1 0

0.0159
0.0166
0.0178
0.0166
0.01,78
0.0161
0.0159

1,.974
5.482

1,2.335
5.482

1,2.335
3.084
1,.974

6.22
66.89

271..02
66.89

270.99
23.09

3.73

6.22
82.21,

271,.02
66.89

270.09
23.09

a - a
J . / J

622.28
8220.77

27 101,.65
6 688.98

27 098.90
2308.78

373.42

Matrix [A11]:

[A11]' : diagonal matrix; dimension (7 x 7); having the value ui Q"i-t\ on the diagonal

For this network, [A1L'] - [A11].

6 2 . 2 3 0 0 0 0 0 0
0 8 2 2 . 0 8 0 0 0 0 0
0 0 2 7 1 . 0 . 1 . 6 0 0 0 0
0 0 0 6 6 8 . 9 0 0 0 . 0

-0 0 0 0 2709.89 0 0
0 0 0 0 0 2 3 0 . 8 8 0
0 0 0 0 0 0 37.34

6 2 . 2 3 0 0 0 0 0 0
0 8 2 2 . 0 8 0 0 0 0 0
0 0 2 7 1 . 0 J . 6 0 0 0 0
0 0 0 6 6 8 . 9 0 0 0 0
0 0 0 0 2709.89 0 0
0 0 0 0 0 2 3 0 . 8 8 0
0 0 0 0 0 0 37.34

To find Ht+r by Equation 5.L7 following a step-by-step analysis, the following matrices

can be found:

1.24.
0
0
0
0
0
0

[N][A11]',
4 6 0 0 0

1,644.1,5 0 0
0 5420.33 0
0 0 1.337.80
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

541,9.78 0 0
0 461..76 0
0 0 74.68
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(
0.00804 0

0 0.00061
0 0
0 0
0 0
0 0
0 0

( [N][A11] ' , ) -1
0 0
0 0
0 0

0.00075 0
0 0.0001s
0 0
0 0

0 0
0 0
0 0
0 0
0 0

0.0021.9 0
0 0.01339

0
0

0.00018
0
0
0
0

lo.ooso+ -o.00061

|  0  0.00061

100
100
100

|  0 .00804

l -0.00061
l0
l -0 .00018

"10

l - r20.s41
l-100.2s6
|  

-33.383

|  
-16.87e

| _2.3s0

lA21l[N] [A11]')-',
0 0

0 .00018  0
-0.00018 0.00075

0 -0.00075
0 0

0 0
0 0
0 0

0.00219 0
-0.00219 0.01.339

-0.00018
0
0

0.00018
0

tA21l ( tNl [A1 1 ]' )-1 lAL2l
-0.00061 0  -0 .00018

0.00079 -0.00018 0
-0.00018 0.00093 -0.0007s

0 -0.00075 0.00310
0 -0.0021,7

- ( IA2 1l ( tNl [A1 1]' ) 
-t 

11.tz11-t
-100.256 -33.383 -1,6.879

-1423.476 -365.444 -1,04.31.0
-365.444 -1460.1,57 -392.548
-104.310 -392548 -463.689
-1,4.522 -54.651 -64.555

0
0
0

-0.00217
0.01556

-2.3s01
-14.s221
-s4.6s1l
-64.55s1
-73.2731

tAl l l tQl
6.223

82.208
271.01.6

66.890
270.989
23 .088
3.734

(tA21l(tNl[A11]')-1
(tA11ltQllA10l[Ho]))

-0.853
0 . 1
0
0.05

-1.339

[A11] tQl) + ([A10] [Ho])
-93.777

82,2OB
27r.01.6

66.890
270.989

23 .088
-96.266

lA10l[Ho]
-100

0
0
0
0
0

-100

tA2lltQl ( tA21l ( tNl [A1 1]')-1 ( [A1 1]
tQl + [A10][Ho]) - (lA21l
tQl - tql))

-0.1
0.2
0
0 .1
0

l-0.6e3s
l -0 .06
|  0.03

l-0.02
| -1.2ee



Thus

0
0 .5
0
0
0
0
0

(trl - (tNl)tA1

0
0

0.5
0
0
0
0

1l / ) -1tAl1 l )

[A12][Hi*r]+
lAl0llHol

-8.00
72.92
84 .81

-r9.20
7.32
t .98

-2.67

(m)
92.000

164.922
80.1"15
99.3r7
97.335

0
0
0
0
0

0.5
0

(tNltA11l';-t 111lJ

( [N] [A1 1',]-1 X ( [A12] [Hi+r] )
+(tAl0llHol))

-0.0643
0.0444
0.0157

-0.01.44
0.00L4
0.0043

-0.0357

0
0
0
0

0.5
0
0

0
0
0
0
0
0

0 .5

0
0
0

0.5
0
0
0

0.5
0
0
0
0
0
0

0
0
0

0.5
0
0
0

0
0
0
0
0

0.5
0

0.5
0
0
0
0
0
0

0
0
0
0
0
0

0.5

0
0
0
0

0.5
0
0

0 0
0 .s  0
0 0.5
0 0
0 0
0 0
0 0

(tll - (lNltAl1l')-1 ,. tA11l)tQl

0.05
0.05
0.05
0.0s
0.0s
0.05
0.05

1 3 8 Engineering Hydraulics

Hi+r : - ( tA21l ( tNl [A1 1]' )-1 ( tnrzl ) 
-1 ( lez r] ( [N] [A1 1]', ) 

-1 ( tAl 1l tQl

+[A10][Ho] - ([A2l]tQl - Iql))

Civil

Node
2
3
4
5
6

lAl2llHi+rl

92.00
72.92
84.81

-1.9.20
- 7.32

t .98
97.33

To find Qi*r by Equation 5.L8 following a step-by-step analysis, the following matrices

can be found:



Thus

Pipe discharges:
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Qi*r :  ( tr l  -  [N][A11',])-1tA11l)tQl - ((tNl lA11' l)-1([A12][Hi+r]

+[A10][Ho]))

I

t

Pipe
1.-2
2-3
3-4
5-4
2-5
6-5
6-1,

(-3lr)
0.1.1.4
0.006
0.034
0.064
0.049
0.046
0.086

After only five iterations the following are the results.
Head at each node:

Node
2
.,
J

4
5
6

(m)

92.960
81 .358
81 .780
89.81,2
96.727

Pipe
L-2
2-3
3-4
5-4
2-5
6-5
6-l

(-3lr)
0.10667
0.03658
0.00342
0.03342
0.01009
0.05333
0.09333
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Figure 5.12 Pipes in parallel.

Problems

1. Calculate the flows in the pipes of the pipe system illustrated in Figure 5.L2. Minor

are given by C^V212g.

400
250
250

AB 5000
BCr 7000
BCz 7000

0 . 1 5
0 : 1 5
0.06

10.0
15.0
10.0

3.

(No/e: \7hile this problem could be solved by the method of Example 4.I, the method

of quantity balance facilitates a convenient method of solution. Note that the pressure

head elevations at the ends of Ct and C2 are identical.)

In the system shown in Problem 1., an axialflow pump producing a totalhead of 5.0 m

is installed in pipe BCr to boost the flow in this branch. Determine the flows in the pipes.

(No/e: Although it is not strictly possible to predict the head generated by a rotodynamic

pump since this varies with the discharge (see Chapter 6), axial flow pumps often produce

a fairly flat head-discharge curve in the mid-discharge range.)

Determine the flows in the network illustrated in Figure 5.13. Minor losses are given by

C^Vz12g.

AB
BC
BDr
BDz

20 000
5 000
6 000
6 000

500
350
300
250

0.3
0.3
0 .3
0.06

20
10
10
10
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Figure 5.13 Network with reservoirs.

In the system illustrated in Figure. 5.t4, a pump is installed in pipe BC to provide a
flow of 40 Lls to Reservoir C. Neglecting minor losses calculate the total head to be
generated by the pump and the power consumption assuming an overall efficiency of
60%. Determine also the flow rates in the other pipes.

Length (m) Diameter (mm) Ro,rghn*rs (mm),

10 000
4 000
5 000

141

Pipe

AB
BC
BD

400
250
250

0.06
0.06
0.06

5. Determine the pressure head elevations at B and D and the discharges in the branches in
the system illustrated in Figure 5.15. Neglect minor losses.

Pipe Length (m) Dialneter t-mt Roughness (mm)

AB
BC
BD
DE
DF

20 000
2 000
2000
2 000
2 000

600
250
450
300
250

0.06
0.06
0.06
0.06
0.06

Figure 5.14 Network with reservoirs.
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Figure 5.15 Network with reservoirs.

Determine the flows in a pipe system similar in configuration
valve is installed in BC producing a minor loss of 20Vz l2g;
friction losses.

to that in Problem 5. A

otherwise consider only

Pipe

AB 20 000
BC 2000
BD 10 000

-DE 3 000
DF 4 000

450
300
400
250
300

0.06
0.06
0.06
0.06
0.06

7. Determine the flow in the pipes and the pressure head elevations at the junctions of the

closed-loop pipe network illustrated, neglecting minor losses. All pipes have the same

roughness size of 0.03 mm. The outflows at the junctions are shown in litres per second

(see Figure 5.1'6).

Pipe
Length (m)
Diameter (mm)

Pressure head elevation at A : 60 m a.o.d.

+
Inlet

Figure 5.16 Two-loop network.

AB BC CD DE EA BE
s00 600 200 600 600 200
200 150 100 150 200 100



200 Lls

Pipe Network Analysis 143

200 Lls

Figure 5.17 Pipes in parallel.

(No/e: A more rapid solution is obtained by using the head balance method. However the
network can be analysed by the quantity balance method but in this case four unknown
pressure heads, at B, C, D and E, are to be corrected. If the quantity balance method is
used, set a fixed arbitrary pressure head elevation to A, say roo m.)'

Determine the flow distribution in the pipe system illustrated in Figure 5.1,7 andthe total
head loss between A and F. Neglect minor losses. A total dischJrge of 200 L/s passes
through the system.

Pipe
Length (m)
Diameter (mm)
Roughness (mm)

AB
1000
450

0 . 1 5

BCE
3000
300

0.06

BE
2000
2s0

0 .15

BDE
3000
350

0.06

EF
1000

450
0 . 1 5

9.

10 .

In the system shown in Problem 7 (Figure 5.16) a pump is installed in BC to boost the
flow to C. Neglecting minor losses determine the flow distribution and head elevations
at the junctions if the pump delivers a head of 15.0 m.

Determine the flows in the pipes and the pressure head elevations at the junctions in the
network shown in Figure 5.18. Neglect minor losses and take the pressure he"d elevation
at A to be 100 m. The outflows are in litres per second. All pipes have a roughness of
0.06 mm.

/ t ' c  _ /  
2 0

H

G F

, / 3 0  D

E

,/ r0

---+
Inlet

1o
Figure 5.18 Three-loop network.

4o ,/*
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Pipe
Length (m)
Diameter (mm)

AB
400
200

BH
150
200

FG
400
150

GA
300
200

HF
1s0
150

Pipe
Length (m)
Diameter (rnttt)

DH
300
150

BC
300
1 s 0

CD
150
150

DE
150
150

EF
300
150

11. Analyse the flows and pressure heads in the pipe system shown in Figure 5.19. Neglect

minor losses.

Pipe
Length (m)

Diameter (mm)
Roughness (mm)

AB
1000

250
0.06

BC
400
200
0 . 1 5

CD
300
150
0 . 1 5

DE
400
150
0 . 1 5

EF EF
800 300
250 200
0.06 0.1s

'42.

1 3 .

Solve the network in Problem 10 using the gradient method.

Analyse the network of Example 5.1 by the gradient method.

Figure 5.19 Network with reservoirs.

, , /uo

o \ , 0



Flow of Incompressible Fluids in Pipel ines

The pipeline terminates in a nozzle (G : 0.9S) which is 15 m below the bvel in the
reservoir. Determine thenozzle diameter such that the jet will have the maximum possible
power using the available head and determine the jet power.

Oil of absolute viscosity 0.07 N s/m2 and density 925 kglm3 is to be pumped by a
rotodynamic pump along a uniform pipeline 500 gr long to discharge to armosphere at
an elevation of +80 m o.d. The pressure head elevation atthe pump delivery is 95 m o.d.
Neglecting minor losses, compare the discharges attained when the pipe of roughness
0.06 mm is (a) 100 mm and (b) 150 mm diameter, and state in each whether the flow is
laminar or turbulent.

A pipeline L0 km long is to be designed to deliver water from a river through a pumping
station to the inlet tank of a treatment works. Elevation of delivery pressure head at
pumping station is 50 m o.d.; elevation of water in tank is 30 m o.d. Neglecting minor
losses, compare the discharges obtainable using
(a) 

" 
300 mm diameter plastic pipeline which may be considered to be smooth

(i) using the Colebrook-\(/hite equation
(ii) using the Blasius equation

(b) 
" 

300 mm diameter pipeline with an effective roughness of 0.6 mm
(i) using the K6rmin-Prandtl rough law

(ii) using the Colebrook-\7hite equarion.

Determine the hydraulic gradient in a rectangular concrete culvert 1 m wide and 0.6
m high of roughness size 0.06 mm when running full and conveying water at a rate of
z . )  m" /s .
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Flow of lncompressible Fluids in Pipelines

The pipeline terminates in a nozzle (C]/ : 0.98) which is 15 m below the bvel in the

reservoir. Determine thenozzlediameter such that the jet will have the maximrom possible

power using the available head and determine the jet power.

Oil of absolute viscosity 0.07 N s/m2 and denslty 925 kglm3 is to be pumped by a

rotodynamic pump along a uniform pipeline 500 m long to discharge to atmosphere at

an elevation of +80 m o.d. The pressure head elevation at the pump delivery is 95 m o.d.

Neglecting minor losses, compare the discharges attained when the pipe of roughness

0.06 mm is (a) 100 mm and (b) 150 mm diameter, and state in each whether the flow is

laminar or turbulent.

A pipeline 10 km long is to be designed to deliver water from ariver through a pumping

station to the inlet tank of a treatment works. Elevation of delivery pressure head at

pumping station is 50 m o.d.; elevation of water in tank is 30 m o.d. Neglecting minor

losses, compare the discharges obtainable using

(a) a 300 mm diameter plastic pipeline which may be considered to be smooth

(i) using the Colebrook-lfhite equation
(ii) using the Blasius equation

(b) a 300 mm diameter pipeline with an effective roughness of 0.6 mm

(i) using the K6rmin-Prandtl rough law

(ii) using the Colebrook-White equation.

Determine the hydraulic gradient in a rectangular concrete culvert 1 m wide and 0.6

m high of roughness size 0.06 mm when running fulf and conveying water at a tate of

2.5 m3/s.
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